Class Notes - PH 301 & PH401 - MODULE - 3 (Magnetostatics and Time Varying Magnetic
field)

Magnetostatics
The Magnetic Field

Consider two parallel straight wires in which current are flowing. The wires are neutral and
therefore there 1s no net electric force between the wires. Nevertheless, if the current in both wires
1s flowing in the same direction, the wires are found to attract each other. If the current in one of
the wires 1s reversed, the wires are found to repel each other. The force responsible for the
attraction and repulsion 1s called the magnetic force. The magnetic force acting on a moving charge
q1s defined in terms of the magnetic field:

The vector product 1s required since observations show that the force acting on a moving charge 1s
perpendicular to the direction of the moving charge. In a region where there is an electric field and
a magnetic field the total force on the moving force 1s equal to

F

toval de’r + mem'r = qE + q[l- x B.]

This equation is called the Lorentz force law and provides us with the total electromagnetic force
acting on ¢. An important difference between the electric field and the magnetic field 1s that the
electric field does work on a charged particle (it produces acceleration or deceleration) while the
magnetic field does not do any work on the moving charge. This 1s a direct consequence of the
Lorentz force law:

=F_ odi=q(vxF)ev]at=0

romaic

AW e
We conclude that the magnetic force can alter the direction in which a particle moves, but cannot
change its velocity.

Problem 1

A particle of charge g enters the region of uniform magnetic field B (pointing into the page). The
field deflects the particle a distance d above the original line of flight, as shown i Figure 5.1. Is the
charge positive or negative? In terms of a, d, B, and ¢, find the momentum of the particle.

In order to produce the observed deflection, the force on ¢ at the entrance of the field region must
be directed upwards (see Figure.1). Since direction of motion of the particle and the direction of
the magnetic field are known, the Lorentz force law can be used to determine the direction of the
magnetic force acting on a positive charge and on a negative charge. The vector product between ¥
and Fpoints upwards in Figure 5.1 (use the right-hand rule). This shows that the charge of the
particle 1s positive.
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Figure 1. Problem.1.

The magnitude of the force acting on the moving charge 1s equal to

F

romaic

=qvB

As a result of the magnetic force, the charged particle will follow a spherical trajectory. The radius
of the trajectory 1s determined by the requirement that the magnetic force provides the centripetal
force:

my
F  =—3=F

omi r romaic

= qu

In this equation ris the radius of the circle that describes the circular part of the trajectory of
charge ¢. The equation can be used to calculate r:

where pis the momentum of the particle. Figure 5.2 shows the following relation between r, d and
a

(r-a) +a*=r'

This equation can be used to express rin terms of dand a:
a*+at
2d

y =

The momentum of the charge ¢ 1s therefore equal to

a+at
p=qbr=—1—q58
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Figure 2.

Problem .2.

The electric current in a wire is due to the motion of the electrons in the wire. The direction of
current 1s defined to be the direction in which the positive charges move. Therefore, in a
conductor the current is directed opposite to the direction of the electrons. The magnitude of the
current 1s defined as the total charge per unit time passing a given point of the wire (/= dq/dp. It
the current flows n a region with a non-zero magnetic field then each electron will experience a
magnetic force. Consider a tiny segment of the wire of length d/. Assume that the electron density
1s -4 (7m and that each electron is moving with a velocity v. The magnetic force exerted by the
magnetic field on a single electron is equal to

dF, = -¢(¥ x B)

A segment of the wire of length d/ contains A dJ/e electrons. Therefore the magnetic force acting in
this segment 1s equal to

dF,

wamaic

A _ e o e o
= -?dF,, =-Adl\7 % B )= Av(dl x B)=I(dl x B)

Here we have used the definition of the current /in terms of dq and dt:

In this derivation we have defined the direction of dito be equal to the direction of the current (and
therefore opposite to the direction of the velocity of the electrons). The total force on the wire 1s
therefore equal to

Fopue = | GF o =1 [ (dx5)

winr v

Here I have assumed that the current is constant throughout the wire. If the current is flowing over
a surface, it 1s usually described by a surface carrent density X, which is the current per unit length-
perpendicular-to-flow. The force on a surface current 1s equal to

Page 3



Class Notes - PH 301 & PH401 - MODULE - 3 (Magnetostatics and Time Varying Magnetic
field)

F

romaic

= [ (RxF)da
e

If the current flows through a volume, 1s it is usually described in terms of a volume current density
7. The magnetic force on a volume current i1s equal to

Fopwe = | (FxB)ar

o
Vol

The surface integral of the current density Facross the surface of a volume Vis equal to the total
charge leaving the volume per unit time (charge conservation):

Yedgeol
v

Using the divergence theorem we can rewrite this expression as

§ Jeda= J. [\:of]dr=—% I par

Swyoce Vorluer Vorluer

Since this must hold for any volume ¥V'we must require that

— ad o
> _— L ————
NV e =

This equation 1s known as the continuity equation.
The Biot-Savart Law

In this Section we will discuss the magnetic field produced by a steady current. A steady current 1s
a flow of charge that has been going on forever, and will be going on forever. These currents
produce magnetic fields that are constant in time. The magnetic field produced by a steady line
current 1s given by the Biot-Savart Law:

[ x AF I ¢ dlxAar
J.I_\r_:j(”:%J _\r?x

e O

A
B(‘P']_Mr

where diis an element of the wire, 71s the vector connecting the element of the wire and P, and #1s
. . . -7 2, . . .. .

the permeability constant which is equal to% =4710" N/A " The unit of the magnetic field is the

Tesla (7). For surface and volume currents the Biot-Savart law can be rewritten as

K xAF

At .

ol = 2K _&
B(p) =2 ;.,,L
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and

J % AF
o ar

Bip)=LL |

Vo luer

Example:. Find the magnetic field at point Pfor each of the steady current configurations shown in
Figure 3.

a) The total magnetic field at P1s the vector sum of the magnetic fields produced by the four
segments of the current loop. Along the two straight sections of the loop, rand dlare parallel or
opposite, and thus dl x7=0. Therefore, the magnetic field produced by these two straight segments
1s equal to zero. Along the two circular segments 7and diare perpendicular. Using the right-hand
rule it 1s easy to show that

1
e unljdfxé w3 . ul -

B_,(,P)="Z;u~ = R v a1
and

I ¢dl 1l I
—7 u, Qa -~ =

Figure 3..

oy Ml p AIXR  uIaR . gl -
B(P) =5 | E
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where Zis pointing out of the paper. The magnetic field produced at Pby each of the two linear
segments will also be directed along the negative z axis. The magnitude of the magnetic field
produced by each linear segment 1s just half of the field produced by an infinitely long straight wire
(see Example 5 in Griffiths):

By (P) =2t o
N AL AR O AR

U 2

The total field at Pis therefore equal to

—_—— — — - —_ + —_—
fefaf 27 4R 2aR R\4 2rm;

Example:

Suppose you have two infinite straight-line charges A, a distance d apart, moving along at a constant
v (see Figure 5.4). How fast would vhave to be in order for the magnetic attraction to balance the
electrical repulsion?

A —w
d
A —»V
Figure 4.

When a line charge moves it looks like a current of magnitude 7= Av. The two parallel currents
attract each other, and the attractive force per unit length 1is

and 1s attractive. The electric generated by one of the wires can be found using Gauss' law and 1s
equal to
A

) A
2mE, 7

Hr)=

The electric force per unit length acting on the other wire 1s equal to

1 4

2
3/780 d

Fiewic = A Eld) =
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1 A2 o A

e, d 2@ d

or

1
=
vt = —

L =P

This requires that

1

V= =310°m/s
RN

This requires that the speed vis equal to the speed of light, and this can therefore never be
achieved. Therefore, at all velocities the electric force will dominate.

The Divergence and Curl of B.

Using the Biot-Savart law for a volume current Jwe can calculate the divergence and curl of B:

VeBE=0
and
VxB=put

This last equation is called Ampere's law in differential form. This equation can be rewritten, using
Stokes' law, as

_[ [T.Y.E]O(iﬁ=§370di=,uﬁ _[ Jeda =y, .
Swyoee Lne Swioce

This equation 1s called Ampere's law in integral form. The direction of evaluation of the line
mtegral and the direction of the surface element vector d@must be consistent with the right-hand
rule.

Ampere's law 1s always true, but 1s only a useful tool to evaluate the magnetic field if the symmetry
of the system enables you to pull Foutside the line integral. The configurations that can be handled
by Ampere's law are:

1. Infinite straight lines

2. Infinite planes

3. Infinite solenoids

4. Toroids

Example: A thick slab extending from z=-ato z= a carries a uniform volume current 7 =Ji. Find
the magnetic field both inside and outside the slab.
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Figure 5.5.

Because of the symmetry of the problem the magnetic field will be directed parallel to the y axis.
The magnetic field in the region above the xy plane (2> 0) will be the mirror image of the field in
the region below the xy plane (z< 0). The magnetic field in the xy plane (2= 0) will be equal to
zero. Consider the Amperian loop shown i Figure 5.5. The current is flowing out of the paper,
and we choice the direction of dato be parallel to the direction of 7. Therefore,

j Fedz=JL 0D<z<a
Swiee

I Jeda = JaL z>a
Sutixe

The direction of evaluation of the line integral of Fmust be consistent with our choice of the
direction of da (right-hand rule). This requires that the line integral of Fmust be evaluated in a
counter-clockwise direction. The line integral of Fis equal to

$ Feal=5L

Line

Applying Ampere's law we obtain for B:

p=t j Jeda=pJz D<z<a
L.fwihf

gl I Jeda=yJa z>a
waﬂ:v

Thus

B(z) = -, Jaj a<z
Bz)= -,UoJiUA' -—a<z=<a

B(z) = u,Jaj z<-a
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The Vector Potential

The magnetic field generated by a static current distribution 1s uniquely defined by the so-called
Maxwell equations for magnetostatics:

Vo

|

=0

|
|

x

= ‘qu

Similarly, the electric field generated by a static charge distribution 1s uniquely defined by the so-
called Maxwell equations for electrostatics:

VeE=£
&
¥xE=0

The fact that the divergence of Bis equal to zero suggests that there are no point charges for 5.
Magnetic field lines therefore do not begin or end anywhere (in contrast to electric field lines that
start on positive point charges and end on negative point charges). Since a magnetic field 1s created
by moving charges, a magnetic field can never be present without an electric field being present. In
contrast, only an electric field will exist if the charges do not move.

Maxwell's equations for magnetostatics show that if the current density 1s known, both the
divergence and the curl of the magnetic field are known. The Helmholtz theorem indicates that in
that case there 1s a vector potential Zsuch that

BF=VxA

However, the vector potential 1s not uniquely defined. We can add to it the gradient of any scalar
function fwithout changing its curl:

Vx[A+Ff)=VxA+VxVr=Vxa

The divergence of &+ Vfis equal to

VelZ+Tf)=VeZ+TeTr=Ved+V'f

It turns out that we can always find a scalar function fsuch that the vector potential Ais divergence-

less. The main reason for imposing the requirement that ¥ ¢ =0is that it simplifies many
equations involving the vector potential. For example, Ampere's law rewritten in terms of Ais

xB=Vx(VxA)=V(VeA)-VA=-V2A=p7

1

or

<
)
1]
g
“~
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This equation 1s similar to Poisson's equation for a charge distribution p:

Therefore, the vector potential Acan be calculated from the current 7in a manner similar to how
we obtained Virom p. Thus

F
I —dr for a volume curend
4 Vorluer A
_ K
A= L I —da for a surface current
4 o A
_ I u,d ¢ odl
A=£'3- I —a=*= | — for a line cwurent
4w ;. Ar T A

Note: these solutions require that the currents go to zero at infinity (similar to the requirement that
p goes to zero at infinity).

Example:
Find the magnetic vector potential of a finite segment of straight wire carrying a current Z. Check
that your answer is consistent with eq. (5.35) of Griffiths.

The current at infinity is zero in this problem, and therefore we can use the expression for Ain
terms of the line integral of the current Z Consider the wire located along the ~axis between z and
2z (see Figure 5.6) and use cylindrical coordinates. The vector potential at a point Pis independent
of ¢ (cylindrical symmetry) and equal to

Z___AJ-ﬂ:,u,,IJ-:, az' A___ﬂm L+t +2, .
4 L.NAJ 47 71+z'? 47 7+ "p-?+ll"'

Here we have assumed that the origin of the coordinate system is chosen such that Phas z= 0.
The magnetic field at 2 can be obtained from the vector potential and 1s equal to

= = = 9A . ul r 1 r 1 -
B = VxA=-—"p=-2 - 5 =
2 4T \|fr’+z,;z 14+\;{r’+z,,2 Jr? -+-z,'e 1,+Jr’+zf
_ M 2, 4 wo phpogn o gs
T dar I:...‘r2 +20 Jri+z} ](') ~dar [sin6, -sing ]

where 6 and 6: are defined in Figure 5.6. This result i1s identical to the result of Example 5 in
Grittiths.
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F 3
.
L4

Figure 6.

Example: o

If Fis uniform, show that A==F*B)/2 where Fis the vector from the origin to the point in
question. That is check that Vx&=Fand VeB=0.

The curl of =~FxF)/2i equal to

T [(BeT)r-(re¥)5 +7(T o 5)-5(T o7)]

13—

Vx(FxF)=-

1|

Since Fis uniform it is independent of r; 6, and ¢ and therefore the second and third term on the
right-hand side of this equation are zero. The first term, expressed in Cartesian coordinates, 1s
equal to

ooy [ 2 B Nias: = = R
(Be¥V)F=|B,—+B,—+B—|x+y+zk)=Bi+Bj+Bk=5
sox gy TR )N TY S

The fourth term, expressed in Cartesian coordinates, is equal to

o e BB
ﬂ.Vor_)—B[ax,\-fay)+azz/—:B

Therefore, the curl of Ais equal to

VxA=-

(B-3B)=F

2] =

The divergence of Ais equal to

f‘oi:-—%\?o(}’xf)=—%[§o(\__‘x7’)—70(lfx§)]=0

Find the vector potential above and below the plane surface current of Example 5.8 in Griffiths.
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In Example 5.8 of Griftiths a uniform surface current is flowing in the xy plane, directed parallel to
the x axis:

K=Ki

However, since the surface current extends to ifinity, we can not use the surface integral of E7ar
to calculate Zand an alternative method must be used to obtain A. Since Example 8 showed that 5

1s uniform above the plane of the surface current and Fis uniform below the plane of the surface
current, we can use the result of Problem 5.27 to calculate A:

(FxB)

19|

A

In the region above the xy plane (2> 0) the magnetic field is equal to

=
Therefore,
i j i
5 1 e 1 U, = M %
A=-—(FxB)=-2 X y z =-LEzi+ St Kk
0 -fgx o

In the region below the xy plane (2 < () the magnetic field is equal to

F=Lgj

u|,§

Therefore,

i j r

e Dgepeese 1 i nis, il e
A=-—(FxB)=—7| «x y b4 =Thzz—rk.\'k

by L.
o Lx o

We can verify that our solution for Ais correct by calculating the curl of A (which must be equal to
the magnetic field). For z> 0:

<
<
B
Il
S.‘l Q-

j
2
0
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The vector potential Zis however not uniquely defined. For example, 4= Am12)K21
A=lm /20K e dlso possible solutions that generate the same magnetic field. These solutions also

satisfy the requirement that Ve E=0.
The Three Fundamental Quantities of Magnetostatics

Our discussion of the magnetic fields produced by steady currents has shown that there are three
fundamental quantities of magnetostatics:

1. The current density 7

2. The magnetic field 5

3. The vector potential A

These three quantities are related and 1if one of them 1s known, the other two can be calculated.
The following table summarizes the relations between 7, B, and A:

Known | J= 5= A=
j .'_l!n_. fordr .'_l!n_.j_i_dr
47’ Ar 417 Ar
= L= o) 1 rBxAr
B —(¥x5) —[—=ar
Ly ! 4T Ar
a SR Vi
-”ﬁ
The Boundary Conditions of B

In Chapter 2 we studied the boundary conditions of the electric field and concluded that the
electric field suffers a discontinuity at a surface charge. Similarly, the magnetic field suffers a
discontinuity at a surface current.

________

Figure 7. Boundary conditions for .
Consider the surface current X (see Figure 5.7). The surface integral of Fover a wafer thin pillbox
18 equal to

I Beda= B} asoweA =By jenA
Suface

where A 1s the area of the top and bottom of the pill box. The surface integral of Bcan be rewritten
using the divergence theorem:

I Beda= j (VeF)ar=0

Switee Voluer
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since ¥ B =0for any magnetic field B. Therefore, the perpendicular component of the magnetic
field is continuous at a surface current:

By asow = BLpaten

The lIine mtegral of Faround the loop shown i Figure 5.8 (in the limit & — 0) 1s equal to

§ Fedi=5,,,,L-5,..L

Leop

According to Ampere's law the line integral of Faround this loop 1s equal to

§ Bedi=yl_,=uKL
Loop

e
Tt e

-

Figure 5.8. Boundary conditions for 5.
Therefore, the boundary condition for the component of F, parallel to the surface and
perpendicular to the current, 1s equal to

By pove = Bipaten =K

The boundary conditions for Bcan be combined into one equation:

Brove = By sie =.”n(f x ﬁ)

where nis a unit vector perpendicular to the surface and the surface current and pointing "upward".
The vector potential Ais continuous at a surface current, but its normal derivative is not:

The Multipole Expansion of the Magnetic Field

To calculate the vector potential of a localized current distribution at large distances we can use the
multipole expansion. Consider a current loop with current £ The vector potential of this current
loop can be written as

— wfpd oISl o L
A=; T {z[r““ §r P"(_cosf?)dl]}

n=0 Line

At large distance only the first couple of terms of the multipole expansion need to be considered:
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5 Il sy 4] =
o L _§dz+-—,z-§r'cos0dl+ .....
4x |r, T ine

The first term is called the monopole term and is equal to zero (since the line integral of @l is equal
to zero for any closed loop). The second term, called the dipole term, is usually the dominant
term. The vector potential generated by the dipole terms is equal to

I
47

- mr
Agte = Z—

1 o
= § r'cosé@dl =

1 P
— § (7'or) di
xr g AL

This equation can be rewritten as

i LIl 1. o W A d
Aﬂ'\'w'f =__‘2{_:7 X § 7 le =-47r— 7-"

where M s called the magnetic dipole moment of the current loop. It is defined as

= %1 § 7xal

Line

If the current loop 1s a plane loop (current located on the surface of a plane) then (F'xdl)/ 24 the
area of the triangle shown in Figure 5.9. Therefore,

where a1s the area enclosed by the current loop. In this case, the dipole moment of the current
loop 1s equal to

m=1Ia

where the direction of @ must be consistent with the direction of the current in the loop (right-hand
rule).
4

Figure 9. Calculation of .
Assuming that the magnetic dipole 1s located at the origin of our coordinate system and that ™ 1s
pointing along the positive zaxis, we obtain for A:
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- Ly MxF g, msing -

Ad"v e 2

4Tt 4m T

The corresponding magnetic field is equal to

— e 1 of 4, msiné 19 ( u, msing)-
= TxA. =—.—| ing Lo J“--.—( L ]a=
dipts * Aot rsingd 28 \sm 4 1t ror\ 4x r*

. Al i 9
il {ﬁcos(h +sm80}

The shape of the field generated by a magnetic dipole is identical to the shape of the field
generated by an electric dipole.

Example:
Show that the magnetic field of a dipole can be written in the following coordinate free form:

TN LYY Sy S AR
st {3 (mer)r-m}

Z
i I

|

|

|

pI N
T2+6
”l‘ 9 T
- r
Figure 10.

Consider the configuration shown in Figure 5.10. The scalar product between rand ™ 1s equal to

mer =mcosd

The scalar product between 8and M is equal to

\

; 1
med =mcosl = +9J =-msinéd

\ =

Therefore,
= _ M1y, . S U A0 I SRR Rt
B = e {,mcosﬁr +msiné 69} = -ﬁr—,{-{m oF)F —(}m 08.]9} =
R e conms e B T L pape s
2 =R {a(morJr (mer)r (77:.3]9}-4)7 = [3(m o 7)F - m}
O
A
<
Example: Eﬂ
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A circular loop of wire, with radius R, lies in the xy plane, centered at the origin, and carries a
current /running counterclockwise as viewed from the positive 7 axis.

a) What 1s its magnetic dipole moment?

b) What is its (approximate) magnetic field at points far from the origin?

¢) Show that, for points on the zaxis, your answer is consistent with the exact field as calculated in
Example 6 of Griffiths.

a) Since the current loop is a plane loop, its dipole moment is easy to calculate. It is equal to

M=la=naR'Ik

b) The magnetic field at large distances 1s approximately equal to

Fore points on the negative zaxis 6 = 180°. Therefore, for <0
___:lﬁ_/ﬂql
g 4T ! ! 2.r

The exact solution for Fon the positive z axis 1s
. S
Ry (R +22)" .

For z» R the field 1s approximately equal to

R .
i

o=

B=-

u|

which 1s consistent with the dipole field of the current loop.
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Faraday’s Law

In the previous chapter, we have shown that steady electric current can give

steady magnetic field because of the symmetry between electricity & magnetism.
We can ask: Steady magnetic field can give steady electric current. X
OR  Changing magnetic field can give steady electric current.

Define :

(1) Magnetic flux through surface S:

@m:fg.m‘
S

Unit of ®,,, :  Weber (Wh)
1Wb = 1Tm?

(2) Graphical:
®,,, = Number of magnetic field lines passing through surface S

Faraday’s law of induction:

d®m
dt

Induced emf || = N

where N = Number of coils in the circuit.
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X X - B

X X X X A /
o A
X X —‘9{{:——— o
SHUx T

p 4 p 4 w Expanding loop variable B-filed
B = Constant B = Constant

e T

Rotating loop
B = Constant

B = Constant

A = Constant A = Constant dB/dt #0 A = Constant
dA/dt # 0 A = Constant dA/dt # 0
E=0 o€ >0 - & >0 - & >0

Note : The induced emf drives a current throughout the circuit, similar to the
function of a battery. However, the difference here is that the induced emf
is distributed throughout the circuit. The consequence is that we cannot
define a potential difference between any two points in the circuat.

Suppose there is an induced current in the loop, can we

B define AVyp?

Recall: A»_m—. B

R
P /,; AVap=V4 -V =iR >0
= V4>Vp

Going anti-clockwise (same as i),

If we start from A, going to B,

then we get V4 > Vp.
If we start from B, going to A,

then we get Vp > V.

-, We cannot define AV,p !!

This situation is like when we study the interior of a battery.

A battery . : chemical reactions.
) provides the energy needed to drive the
charge carriers around the circuit by . .
The loop = y changing magnetic flux.
sources of emf non-electric means
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Lenz’ Law

(1) The flux of the magnetic field due to induced current opposes the change
in flux that causes the induced current.

(2) The induced current is in such a direction as to oppose the changes that
produces it.

(3) Incorporating Lentz’ Law into Faraday’s Law:

dd
E=-N—"=I
dt
m . Induced current
fa ;
If o >0, 1 = & appears = appears.
N B-field due to —  change in @, so that o, |

mduced current

(4) Lenz’ Law is a consequence from the principle of conservation of energy.

—\/ Motion slowed
%

—
-
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